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'm a data scientist who specialises in domain-knowledge-
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The technical work is always my foundation, but | also care
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both technically solid and practically useful, communicated
with clarity and respect for the domain they serve.
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GRAPH NEURAL NETWORKS FOR

OPERATIONAL PLANNING

Organisation: SINTEF Energy Research

Role:
Researcher (ML & modelling)

Methods:

Graph Convolutional Networks, supervised learning, cost
prediction, simulation-based datasets

Outcome: Developed a fast proxy model to predict
operational cost under contingencies, reducing dependence
on time-domain simulations.

Context & Problem:

Operational planning in power systems requires evaluating
preventive strategies under many possible contingencies. Full
time-domain simulations capture protection behaviour and
dynamic response, but they are computationally expensive
and limit how many strategies can be explored. The research
question was whether ML could replace part of this simulation
pipeline while preserving physically meaningful behaviour.
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In 2023 IEEE Belgrade PowerTech (2023), DOI: http://dx.doi.org/10.1109/PowerTech55446.2023.10202799
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Abstract—Probabilistic operational planning of power systems
usually requires computationally intensive and time consuming
simulations. The method presented in this paper provides a time
efficient alternative to predict the socio-economic cost of system
operational strategies using graph convolutional networks. It
is intended for fast screening of operational strategies for the
purpose of operational planning, It can also be used as a proxy for
operational planning that can be used in long term development
studies. The performance of the model is demonstrated on a
network inspired by the Nordic power system,

Index Terms—probabilistic operational planning, power sys-
tem reliability, contingency analysis, machine learning, graph
neural networks

I. INTRODUCTION
A. Motivation

Most power systems today are operated and planned accord-
ing to deterministic criteria, which are often socio-economical
sub-optimal. In order to keep adequate reliability of supply
while also minimizing the socio-economic costs, moving to-
wards probabilistic criteria is recommended by the European
FP7 project, GARPUR [l1]. ACER, the European Union’s
Agency for the Cooperation of Energy Regulators, adopted
a decision for transmission system operators (TSOs) to de-
velop a methodology on probabilistic risk assessment [2].
The move towards probabilistic criteria requires efficient and
accurate methods for decision support. This study explores the
possibility of using machine learning for modeling decision
support according to probabilistic criteria in system opera-
tional planning. The idea is that the model can be used as
a screening method for operational planning, or for including
a more accurate and fast representation of operations in long-
term planning studies. There is a multitude of considerations
when implementing probabilistic operational planning. The
method should not only consider the risk of violating physical
constraints but also the cost of operation [3]. Methods that
attempt to minimize the cost of power system operation are
therefore considered in this work.

The research leading to these results has received funding from the Research
Council of Norway through the project “Resilient and Probabilistic reliability
management of the t mission grid” (RaPid) (Grant No. 294754), The
Norwegian Water Resources and Energy Directorate, and Statnett.

Signe Riemer-Sgrensen
SINTEF Digital
Oslo, Norway

A dynamic programming model was developed in [4] to
quantify the socio-economic cost and detect the most favorable
socio-economic operational strategy. Dynamic time-domain
simulations were used to capture situations that normally
go undetected by traditional static methods. However, this
approach is computationally intensive. It is also necessary to
predict consequences for a large sample space of possible con-
tingencies, available corrective actions and other uncertainties,
as steps toward identifying the optimal operational strategy.

As a response to these challenges, this paper proposes a two-
step supervised learning model based on graph convolutional
networks (GCNs) to rapidly predict the expected costs of sim-
ulated operational strategies, exemplified using data from [4].

B. Related works

Alternative methods to [4] for probabilistic operational
planning have been presented in the literature [5]-[9]. In [5]
a DC power flow was used to include power system response
in a probabilistic operational planning model. Different cost-
based criteria are compared in [6], where a transport model
was used to model the power system response. An AC power
flow and a linear approximation of frequency response were
used in [7] to include frequency response in an operational
planning model. More recent approaches use machine learning
for generating proxy models of real-time operation to speed
up probabilistic operational planning [8], [9]. In these papers,
a machine learning model is trained to act as a DC-security
constrained optimal power flow (SCOPF) and to predict the
optimal corrective actions given a set of preventive actions.
This is a promising approach, however, the use of a DC-
SCOPF means that voltage, frequency and stability issues will
not be captured. Moreover, the time domain characteristic
of protection systems cannot be included. In the proposed
approach, a GCN is trained to predict the result of a detailed
time-domain simulation that calculates the cost of operating
a power system given a set of preventive and corrective
actions while considering the time-domain characteristics of
protection systems [4].

Graph neural networks (GNNs) is a collective term describ-
ing neural networks that process data structured as graphs. Use

Source: Sheikh-Mohamed et al., 2023 (CC BY 4.0)



GRAPH NEURAL NETWORKS FOR

OPERATIONAL PLANNING

Approach:

| developed a two-stage GCN framework trained on
simulation output: a classification model to filter high-cost
strategies and a regression model to predict cost for low-cost
cases. GCNs were chosen because transmission systems
form a non-Euclidean graph where interactions follow
network topology rather than spatial coordinates; learning
across edges preserves meaningful dependence patterns
between areas, flows, and protection states.

Outcome:

The model enabled fast screening of preventive actions,
providing near-optimal cost estimates while significantly
reducing the number of full simulations required. This
supports system operators and researchers in evaluating
operational strategies at scale.
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PREDICTIVE MAINTENANCE - :
TRANSFORMER COOLING SYSTEM
MONITORING

Organisation: SINTEF Energy Research

Role: | | |

Jupyter Untitled35 Last Checkpoint: 3 hours ago (unsaved changes) P | Logou
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behaviour, but to ensure the model was useful to engineers.



PREDICTIVE MAINTENANCE -
TRANSFORMER COOLING SYSTEM

MONITORING

Approach:

| worked with domain experts to map system states (e.g., load
thresholds, thermal activation behaviour, sensor placement
differences) and used these to construct rule-based filters
before training. LSTMs were chosen due to thermal lag:
temperature changes occur with delayed response to
electrical load, which requires models capable of learning
long-term dependencies rather than only point-in-time
dynamics.

Outcome:

The project demonstrated that domain-aligned
preprocessing and state filtering are prerequisites for
meaningful anomaly detection. Instead of flagging every
deviation, the model targeted anomalies only in periods where
cooling should be active, making outputs actionable for
operators.
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ROOFTOP SOLAR INTEGRATION & 7

PROSUMER ANALYSIS

Organisation: Fornybar Norge

Role:
Research Analyst

Methods:

Created areusable Python script for whole analysis, Scenario
modelling, PV production simulation analysis, market analysis,
large datasets, result validation with expert interviews.

Context & Problem

Norway has increasing interest in rooftop solar despite
historically low electricity prices and hydropower dominance.
The challenge was to assess whether large-scale prosumer
adoption would meaningfully affect grid flows, system costs,
or market design—and to present findings in a way industry
actors could use in policy discussions.

Hvordan fa solkraft fra Norges hustak
inn i kraftsystemet?

Source: Fornybar Norge (2023), “Hvordan fa solkraft fra Norges hustak inn i kraftsystemet”



ROOFTOP SOLAR INTEGRATION & ;

PROSUMER ANALYSIS

Approach:

| worked with both grid operators and solar suppliers to
validate assumptions about production profiles, household
demand, seasonal variation, and grid integration challenges.
Rather than treating the dataset as neutral, | supplemented it
with domain knowledge (e.g., seasonal hydro patterns,
regional grid constraints) and removed periods where solar
has no systemic relevance (e.g., winter months with negligible
production).

Outcome:
Provided evidence-based insights on how distributed solar
could impact the Norwegian grid and market structure.

The analysis showed that the main system effects come not
from average production but from localized congestion and
peak-time behaviour, shifting the conversation from volume-
based arguments to infrastructure planning and regulatory
design.

Hvordan fa solkraft fra Norges hustak
inn i kraftsystemet?

Source: Fornybar Norge (2023), “Hvordan fa solkraft fra Norges hustak inn i kraftsystemet”



DOMAIN-ADAPTIVE VISUALISATION &
STAKEHOLDER COMMUNICATION

Good visualization is a shared language. When results are communicated in formats
people intuitively understand, it strengthens collaboration, speeds up validation,
and turns analysis into real-world action.



EXAMPLE | - VISUALS THAT SUPPORT 10
COST-AWARE OPERATIONAL DECISIONS

e A false high just means buying extra backup early.
e A false low means paying huge real-time costs.

e [hat's why operators need the confusion matrix.

True low cost False low cost
519 5
99% 1%
True high cost
11
3%

Accuracy=0.981
Precision=0.984
Recall=0.966

From information to comprehensive knowledge



EXAMPLE Il - 2 AM ALARM CALL

e |magine a transformer shows an anomaly score of 0.74.

e [hat number means nothing to an operator at 02:00 AM
during an alarm call.

e [he model becomes valuable only when it speaks the OK
language of real operations.

Monitor

Anomaly Score=0.74

From information to comprehensive knowledge




EXAMPLE Il - IT'S NOT ABOUT THE FUEL. 12
IT'S ABOUT THE TRAFFIC

| realised one of the common misconception that was
difficult for power grid owners to convey was why at-home-
installations could cause challenges for the grid although
people were consuming more energy than they were
producing:

In other words:
e Net Production Per Year # Net Production Per Minute

This plot shows net flow for one household.
e Above zero = production surplus exported to the grid.
e Below zero = consumption higher than production, so
power is imported.

Solar homes flip between the two many times a day.

Effekt ( kWh/h)
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1
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Source: Fornybar Norge (2023), “Hvordan fa solkraft fra Norges hustak inn i kraftsystemet”



EXAMPLE IV- HELPING GRID OWNERS 13
INTERPRET CURTAILMENT AND REGULATORY

LIMITS DIFFERENTLY

The concept of curtailment is uncommon in Norway,
therefore when presenting it, intuitive visuals were crucial.

The bottom graph shows production from a household
solar PV-system on the highest production day of the year.
| found out that the industry is well aware that peak
production days are few and far between, so this visual
helped communicate how little energy was actually going
to ‘waste’.

Curtailment doesn’t mean smaller solar systems.

It's like cars:

You don’t ban cars because roads get crowded a few days
a yeatr.

You just can’t drive during those rare peak hours —

less than 3% of the time.

Strupet produksjon - Stor enebolig i Forstadsomrade

p—

Strupet produksijon (%)

0
~jan feb mar apr mai jun jul aug sep okt nov des
Source: Fornybar Norge (2023), “Hvordan fa solkraft fra Norges hustak inn i kraftsystemet”
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Source: Fornybar Norge (2023), “Hvordan fa solkraft fra Norges hustak inn i kraftsystemet”
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DOMAIN-INFORMED DATA QUALITY &
FEATURE ENGINEERING

Using domain logic — expert heuristics, physical constraints, operational rules — to
clean, filter, and structure data before training any ML model.



EXAMPLE | - CLEANING TIME-SERIES FOR
TRANSFORMER COOLING SYSTEM MONITORING

Step 1— Apply ML Preprocessing Methods
- Initial cleaning

- Basic filtering

- Preliminary anomaly detection

- Baseline feature extraction

Step 2 — Share Results with Domain Experts (Visual +
Analytical Review)

- Use visualised data (heatmaps, correlation plots, sensor-
state timelines)

- |dentify explainable anomalies and domain-driven
patterns

Examples of expert-driven insights:

- Sensor location vs. thermal zones explains
correlations/mismatches

- |dentifying irrelevant system states (remove from
dataset). Pseudocode to the right exemplifies this.

Channel 1

Anomaly Detection

10
Input
. | Anomalous
|
| |
EI | | |
- TJ il - £ . -jJ
20 40 bl 80 1 120 14

def classify_operating_state(row):

Classify transformer and cooling system state for a single time step.

row: an object with at least:
- row["load"]
- row["temp_sensor_16"]

load row[ "Load"]

t16 = row["temp_sensor_16"]

# Default assumptions
transformer_in_use = True
cooling system_active = True

# Rule 1: transformer not in operational use
if load <= LOAD_OFF_THRESHOLD:
transformer_in_use = False

# Rule 2: cooling system inactive
if t16 <= TEMP_SENSOR16_INACTIVE_THRESHOLD:
cooling system_active = False

return {
"transformer_in_use": transformer_in_use,
"cooling_system active": cooling_system_active,
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Step 3 — Translate Expert Insights into Data Rules
- Turn domain explanations into filtering constraints
- Add conditional logic to remove misleading samples. See
example in pseudo code.
Step 4 — Update Data Processing Pipeline Time Series com POnc nts
- Add new cleaning constraints
- Update feature engineering logic
- Re-define imputation decisions based on domain
knowledge

Step 5 — Re-run Preprocessing + Return to Experts

- New visualisations

- New anomalies to explain T —
- Repeat cycle until modelling dataset converges

def preprocessing pipeline(data):
# Step 1: Compute derived state
data[ "transformer_off"] = data["load”] <= LOAD_THRESHOLD

data[ "cooling active"] = data["cooling state"] == "on

# Step 2: Filter out irrelevant periods
mask = (~data[ “transformer off"]) & (data["cooling active"])
filtered = data[mask]

return filtered



CROSS-INDUSTRY EXAMPLES 1

Domain-informed preprocessing ensures the model learns meaningful behaviour by using domain constraints,
system states, physical limits, and expert insight to shape filtering, feature engineering, and data selection.

= Finance & Fraud Detection

* Apply seasonal/holiday segmentation before training

* Normalize behavior per-user rather than global

 Treat travel mode as separate behavioural baseline

» Use regulatory thresholds to create cost-sensitive labels

+J’ Healthcare & Biometric Signals

» Segment data by physiological state (rest, sleep, exertion)

* Normalize vitals per patient baseline instead of global scaling

* Remove samples when sensor contact is lost

» Engineer features from known circadian or pharmacological cycles

W Retail / Demand Forecasting % Telecom & Network Operations
* Remove periods of stockouts to avoid misinterpreting demand - Remove planned maintenance outages from fault datasets
« Condition demand features on promotions, holidays, weather * Engineer load ratios: traffic vs capacity
* Engineer cross-category demand elasticity features « Use time-of-day + routing topology as contextual features

» Use physical supply-chain constraints (lead times, batch deliveries) * Filter synthetic anomalies from failover testing



DOMAIN-AWARE ML MODELLING &
MODEL SELECTION

Choosing the right model is not purely about the data. It’s about the real system and
processes the model is supposed to simulate. It’s about the intended use.

18
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EXAMPLE | - LSTMS FOR SYSTEMS WITH LAG 19

TIME (E.G. THERMAL LAG)

LSTMs are a class of Recurrent Neural Networks (RNNs) designed to
model sequential data using feedback loops that retain information
from earlier time steps. Unlike feed-forward models, which treat each
sample independently, LSTMs keep a memory of past values, making
them suitable for systems where the current state depends on
historical behaviour.

RNNSs in general are a strong fit for time-series prediction, but standard
RNNs struggle with vanishing gradients, limiting their ability to capture
long-term dependencies. LSTMs address this through gating
mechanisms (input, forget, output gates) that control how information is
stored or discarded over time. This allows them to learn slow,
accumulated effects, rather than only short-term fluctuations.

In systems with lag—such as thermal dynamics, where temperature
responds gradually to load changes—this memory capability is crucial.
LSTMs can model delayed responses caused by heat capacity, inertia,
and cooling processes more effectively than models that assume
immediate cause-effect relationships.
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EXAMPLE Il - GCNS FOR SYSTEMS WITH GRAPH

TOPOLOGY

Although several model architectures were tested, Graph
Convolutional Networks (GCNs) were ultimately the best fit
because their mathematical foundations align with systems
that have a non-kEuclidean structure. Unlike classical neural
networks, which assume data lies in a regular grid (e.g,,
images or sequences), GCNs operate directly on graphs,
where relationships between components are represented
as edges rather than fixed positions.

Source: Sheikh-Mohamed et al., 2023 (CC BY 4.0)

This makes GCNSs particularly suited for power systems,
where network topology, line connections, and flow
constraints define behaviour.

In a graph-structured system, nodes represent entities and
edges represent relationships between them. What makes
this fundamentally different from Euclidean data is that
these relationships are irregular—each node can connect to
any number of other nodes, and those connections carry
meaning.

GCNs learn not only from node attributes, but from how
nodes are connected (the relationship between them is
represented by edges). The mathemathical formula is given
below.

G = {¢,V.En]
where n : E = [{ij} : i,j € V}



CROSS-INDUSTRY EXAMPLES .

A model needs to perform well in the real world, and not only on a dataset.
Realising that requires aligning algorithms with domain mechanics.

~ Systems Where Outcomes Must WISystems With High-Dimensional

Optimize a Cost or Utility Function Signals (e.g., Images, Audio)
Real-world examples:

* Robot path planning to minimize energy + collision risk Real-world examples:

* Dynamic inventory ordering to minimize stockouts vs warehousing cost * Crack detection in infrastructure images
 Adaptive traffic signal control to minimize delays  Audio analysis for machine noise / bearing faults
» Power dispatch to minimize cost while satisfying security constraints » Medical radiography (MRI, CT scans)

 Log-based event embeddings for cybersecurity
Task framing:

* Not just prediction — action selection Task framing:

» Rewards encode business/operational cost » Classification, regression, or embedding learning
Good model types: Good model types:

* Reinforcement learning (RL) * CNNs (vision, spatial structure)

* Dynamic programming * Transformers (long-range context)

* Monte Carlo optimization » Contrastive self-supervised learning

» Constrained optimization models






