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I’m a data scientist who specialises in domain-knowledge–

informed machine learning. I enjoy working at the

intersection of domain expertise and technical modelling—

turning expert insights into clear data preprocessing,

thoughtful feature engineering, and model choices that

reflect how systems actually behave.

The technical work is always my foundation, but I also care

about presenting results in a way that supports the people

who rely on them. My goal is to deliver solutions that are

both technically solid and practically useful, communicated

with clarity and respect for the domain they serve.

Data Scientist specialising in domain-knowledge–based ML

modelling, with a complementary strength in human-centred

integration.

BY YASMIN BASHIR SHEIKH-MOHAMED
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Graph Neural Networks for Probabilistic Power Planning — SINTEF Energy Research
Proactive Condition Monitoring of Transformers — SINTEF Energy Research
Prosumer Solar Integration Study — Fornybar Norge

PAGE

3
5
7

2

METHODOLOGY & APPROACH

Domain-Adaptive Visualisation & Stakeholder Communication
Domain-Informed Data Quality & Feature Engineering
Domain-Aware ML Modelling & Model Selection

9
14
18

NB: Some diagrams and examples in this section are simplified or generalized to illustrate the methods. They
are based on my project work, but adapted for clarity, confidentiality, and cross-industry transferability.



GRAPH NEURAL NETWORKS FOR
OPERATIONAL PLANNING
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Organisation: SINTEF Energy Research

Role: 
Researcher (ML & modelling)

Methods: 
Graph Convolutional Networks, supervised learning, cost
prediction, simulation-based datasets
Outcome: Developed a fast proxy model to predict
operational cost under contingencies, reducing dependence
on time-domain simulations.

Context & Problem:

Operational planning in power systems requires evaluating
preventive strategies under many possible contingencies. Full
time-domain simulations capture protection behaviour and
dynamic response, but they are computationally expensive
and limit how many strategies can be explored. The research
question was whether ML could replace part of this simulation
pipeline while preserving physically meaningful behaviour.

Source: Sheikh-Mohamed et al., 2023 (CC BY 4.0)



GRAPH NEURAL NETWORKS FOR
OPERATIONAL PLANNING
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Approach:
I developed a two-stage GCN framework trained on
simulation output: a classification model to filter high-cost
strategies and a regression model to predict cost for low-cost
cases. GCNs were chosen because transmission systems
form a non-Euclidean graph where interactions follow
network topology rather than spatial coordinates; learning
across edges preserves meaningful dependence patterns
between areas, flows, and protection states.

Outcome:
The model enabled fast screening of preventive actions,
providing near-optimal cost estimates while significantly
reducing the number of full simulations required. This
supports system operators and researchers in evaluating
operational strategies at scale.

Source: Sheikh-Mohamed et al., 2023 (CC BY 4.0)



PREDICTIVE MAINTENANCE -
TRANSFORMER COOLING SYSTEM
MONITORING
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Organisation: SINTEF Energy Research

Role: 
ML Engineer / Research Assistant

Methods: 
LSTMs, expert-informed feature engineering, anomaly
detection, sensor-state filtering
Outcome: Identified domain-specific operational states and
built preprocessing logic enabling meaningful condition
monitoring.

Context & Problem:

Transformer cooling behaviour reflects both thermal load and
mechanical conditions, but sensor data includes periods
where the cooling system is off or the transformer is not in
operational use. Without filtering these states, anomaly
models learn spurious patterns, resulting in false alerts and
poor interpretability. The goal was not only to model
behaviour, but to ensure the model was useful to engineers.
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Approach:
I worked with domain experts to map system states (e.g., load
thresholds, thermal activation behaviour, sensor placement
differences) and used these to construct rule-based filters
before training. LSTMs were chosen due to thermal lag:
temperature changes occur with delayed response to
electrical load, which requires models capable of learning
long-term dependencies rather than only point-in-time
dynamics.

Outcome:
The project demonstrated that domain-aligned
preprocessing and state filtering are prerequisites for
meaningful anomaly detection. Instead of flagging every
deviation, the model targeted anomalies only in periods where
cooling should be active, making outputs actionable for
operators.

PREDICTIVE MAINTENANCE -
TRANSFORMER COOLING SYSTEM
MONITORING



ROOFTOP SOLAR INTEGRATION &
PROSUMER ANALYSIS
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Organisation: Fornybar Norge

Role: 
Research Analyst

Methods: 
Created a reusable Python script for whole analysis, Scenario
modelling, PV production simulation analysis, market analysis,
large datasets, result validation with expert interviews.

Context & Problem
Norway has increasing interest in rooftop solar despite
historically low electricity prices and hydropower dominance.
The challenge was to assess whether large-scale prosumer
adoption would meaningfully affect grid flows, system costs,
or market design—and to present findings in a way industry
actors could use in policy discussions.

Source: Fornybar Norge (2023), “Hvordan få solkraft fra Norges hustak inn i kraftsystemet”



ROOFTOP SOLAR INTEGRATION &
PROSUMER ANALYSIS
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Approach:
I worked with both grid operators and solar suppliers to
validate assumptions about production profiles, household
demand, seasonal variation, and grid integration challenges.
Rather than treating the dataset as neutral, I supplemented it
with domain knowledge (e.g., seasonal hydro patterns,
regional grid constraints) and removed periods where solar
has no systemic relevance (e.g., winter months with negligible
production).

Outcome:
Provided evidence-based insights on how distributed solar
could impact the Norwegian grid and market structure.

The analysis showed that the main system effects come not
from average production but from localized congestion and
peak-time behaviour, shifting the conversation from volume-
based arguments to infrastructure planning and regulatory
design.

Source: Fornybar Norge (2023), “Hvordan få solkraft fra Norges hustak inn i kraftsystemet”



DOMAIN-ADAPTIVE VISUALISATION &
STAKEHOLDER COMMUNICATION
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Good visualization is a shared language. When results are communicated in formats

people intuitively understand, it strengthens collaboration, speeds up validation, 

and turns analysis into real-world action.
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A false high just means buying extra backup early.

A false low means paying huge real-time costs.

That’s why operators need the confusion matrix.

From information to comprehensive knowledge

EXAMPLE I - VISUALS THAT SUPPORT 
COST-AWARE OPERATIONAL DECISIONS



11

Imagine a transformer shows an anomaly score of 0.74.

That number means nothing to an operator at 02:00 AM

during an alarm call.

The model becomes valuable only when it speaks the

language of real operations.

From information to comprehensive knowledge

EXAMPLE II  - 2 AM ALARM CALL
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I realised one of the common misconception that was

difficult for power grid owners to convey was why at-home-

installations could cause challenges for the grid although

people were consuming more energy than they were

producing:

In other words:

Net Production Per Year ≠ Net Production Per Minute

This plot shows net flow for one household.

Above zero = production surplus exported to the grid.

Below zero = consumption higher than production, so

power is imported.

Solar homes flip between the two many times a day.

Source: Fornybar Norge (2023), “Hvordan få solkraft fra Norges hustak inn i kraftsystemet”

EXAMPLE II I  - IT ’S NOT ABOUT THE FUEL. 
IT ’S ABOUT THE TRAFFIC
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The concept of curtailment is uncommon in Norway,

therefore when presenting it, intuitive visuals were crucial.

The bottom graph shows production from a household

solar PV-system on the highest production day of the year.

I found out that the industry is well aware that peak

production days are few and far between, so this visual

helped communicate how little energy was actually going

to ‘waste’.

Curtailment doesn’t mean smaller solar systems.

It’s like cars:

You don’t ban cars because roads get crowded a few days

a year.

You just can’t drive during those rare peak hours —

less than 3% of the time.

Source: Fornybar Norge (2023), “Hvordan få solkraft fra Norges hustak inn i kraftsystemet”

Source: Fornybar Norge (2023), “Hvordan få solkraft fra Norges hustak inn i kraftsystemet”

EXAMPLE IV- HELPING GRID OWNERS
INTERPRET CURTAILMENT AND REGULATORY
LIMITS DIFFERENTLY



DOMAIN-INFORMED DATA QUALITY &
FEATURE ENGINEERING
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Using domain logic — expert heuristics, physical constraints, operational rules — to

clean, filter, and structure data before training any ML model.
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Step 1 — Apply ML Preprocessing Methods

 • Initial cleaning

 • Basic filtering

 • Preliminary anomaly detection

 • Baseline feature extraction

Step 2 — Share Results with Domain Experts (Visual +

Analytical Review)

 • Use visualised data (heatmaps, correlation plots, sensor-

state timelines)

 • Identify explainable anomalies and domain-driven

patterns

Examples of expert-driven insights:

  • Sensor location vs. thermal zones explains

correlations/mismatches

 • Identifying irrelevant system states (remove from

dataset). Pseudocode to the right exemplifies this.

EXAMPLE I - CLEANING TIME-SERIES FOR
TRANSFORMER COOLING SYSTEM MONITORING



16
Step 3 — Translate Expert Insights into Data Rules

 • Turn domain explanations into filtering constraints

 • Add conditional logic to remove misleading samples. See

example in pseudo code.

Step 4 — Update Data Processing Pipeline

 • Add new cleaning constraints

 • Update feature engineering logic

 • Re-define imputation decisions based on domain

knowledge

Step 5 — Re-run Preprocessing + Return to Experts

 • New visualisations

 • New anomalies to explain

• Repeat cycle until modelling dataset converges



CROSS-INDUSTRY EXAMPLES 17

Domain-informed preprocessing ensures the model learns meaningful behaviour by using domain constraints,

system states, physical limits, and expert insight to shape filtering, feature engineering, and data selection.

 • Apply seasonal/holiday segmentation before training
 • Normalize behavior per-user rather than global
 • Treat travel mode as separate behavioural baseline
 • Use regulatory thresholds to create cost-sensitive labels

💳 Finance & Fraud Detection

 • Segment data by physiological state (rest, sleep, exertion)
 • Normalize vitals per patient baseline instead of global scaling
 • Remove samples when sensor contact is lost
 • Engineer features from known circadian or pharmacological cycles

🩺 Healthcare & Biometric Signals

 • Remove periods of stockouts to avoid misinterpreting demand
 • Condition demand features on promotions, holidays, weather
 • Engineer cross-category demand elasticity features
 • Use physical supply-chain constraints (lead times, batch deliveries)

📦 Retail / Demand Forecasting

• Remove planned maintenance outages from fault datasets
 • Engineer load ratios: traffic vs capacity
 • Use time-of-day + routing topology as contextual features
 • Filter synthetic anomalies from failover testing

📡 Telecom & Network Operations



DOMAIN-AWARE ML MODELLING &
MODEL SELECTION

18

Choosing the right model is not purely about the data. It’s about the real system and

processes the model is supposed to simulate. It’s about the intended use. 
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LSTMs are a class of Recurrent Neural Networks (RNNs) designed to

model sequential data using feedback loops that retain information

from earlier time steps. Unlike feed-forward models, which treat each

sample independently, LSTMs keep a memory of past values, making

them suitable for systems where the current state depends on

historical behaviour.

RNNs in general are a strong fit for time-series prediction, but standard

RNNs struggle with vanishing gradients, limiting their ability to capture

long-term dependencies. LSTMs address this through gating

mechanisms (input, forget, output gates) that control how information is

stored or discarded over time. This allows them to learn slow,

accumulated effects, rather than only short-term fluctuations.

In systems with lag—such as thermal dynamics, where temperature

responds gradually to load changes—this memory capability is crucial.

LSTMs can model delayed responses caused by heat capacity, inertia,

and cooling processes more effectively than models that assume

immediate cause–effect relationships.

EXAMPLE I - LSTMS FOR SYSTEMS WITH LAG
TIME (E.G. THERMAL LAG)
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Although several model architectures were tested, Graph

Convolutional Networks (GCNs) were ultimately the best fit

because their mathematical foundations align with systems

that have a non-Euclidean structure. Unlike classical neural

networks, which assume data lies in a regular grid (e.g.,

images or sequences), GCNs operate directly on graphs,

where relationships between components are represented

as edges rather than fixed positions.

G = {ξ,V,E,η}
where η : E → {{i,j} : i,j ∈ V}

This makes GCNs particularly suited for power systems,

where network topology, line connections, and flow

constraints define behaviour. 

In a graph-structured system, nodes represent entities and

edges represent relationships between them. What makes

this fundamentally different from Euclidean data is that

these relationships are irregular—each node can connect to

any number of other nodes, and those connections carry

meaning.

GCNs learn not only from node attributes, but from how

nodes are connected (the relationship between them is

represented by edges). The mathemathical formula is given

below.

EXAMPLE II  - GCNS FOR SYSTEMS WITH GRAPH
TOPOLOGY

Source: Sheikh-Mohamed et al., 2023 (CC BY 4.0)



CROSS-INDUSTRY EXAMPLES 21

A model needs to perform well in the real world, and not only on a dataset.

Realising that requires aligning algorithms with domain mechanics.

Real-world examples:
 • Crack detection in infrastructure images
 • Audio analysis for machine noise / bearing faults
 • Medical radiography (MRI, CT scans)
 • Log-based event embeddings for cybersecurity

Task framing:
 • Classification, regression, or embedding learning

Good model types:
 • CNNs (vision, spatial structure)
 • Transformers (long-range context)
 • Contrastive self-supervised learning

📸Systems With High-Dimensional

Signals (e.g., Images, Audio)
Real-world examples:
 • Robot path planning to minimize energy + collision risk
 • Dynamic inventory ordering to minimize stockouts vs warehousing cost
 • Adaptive traffic signal control to minimize delays
 • Power dispatch to minimize cost while satisfying security constraints

Task framing:
 • Not just prediction → action selection
 • Rewards encode business/operational cost

Good model types:
 • Reinforcement learning (RL)
 • Dynamic programming
 • Monte Carlo optimization
 • Constrained optimization models

📈 Systems Where Outcomes Must

Optimize a Cost or Utility Function
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T H A N K  Y O U  F O R
Y O U R  A T T E N T I O N


